A generalized Newton method of high-order convergence for solving the large-scale linear complementarity problem
نویسندگان
چکیده
منابع مشابه
A Krylov Subspace Method for Large-Scale Second-Order Cone Linear Complementarity Problem
Recently, a bisection-Newton (BN) iteration [Zhang and Yang, Math. Comp., 83:1701–1726 (2013)] was proposed for solving the second order cone linear complementarity problem (SOCLCP) and was shown to be very efficient for small-to-medium size problems. However, for large scale problems, difficulty arises in the BN iteration in two aspects: 1) a specific eigenpair needs to be computed accurately,...
متن کاملA Damped Guass-Newton Method for the Generalized Linear Complementarity Problem
In this paper, we consider the generalized linear complementarity problem (GLCP) over an affine subspace. To this end, we first reformulate the GLCP as a system of nonsmooth equation via the Fischer function. Based on this reformulation, the famous damped Gauss-Newton (DGN) algorithm is employed for obtaining its solution, and we show that the DGN algorithm is quadratically convergent without n...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA multiplicative multisplitting method for solving the linear complementarity problem
The convergence of the multiplicative multisplitting-type method for solving the linear complementarity problem with an H-matrix is discussed using classical and new results from the theory of splitting. This directly results in a sufficient condition for guaranteeing the convergence of the multiplicative multisplitting method. Moreover, the multiplicative multisplitting method is applied to th...
متن کاملMesh-independent convergence of the modified inexact Newton method for a second order non-linear problem
In this paper, we consider an inexact Newton method applied to a second order nonlinear problem with higher order nonlinearities. We provide conditions under which the method has a mesh–independent rate of convergence. To do this, we are required to first, set up the problem on a scale of Hilbert spaces and second, to devise a special iterative technique which converges in a higher than first o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2015
ISSN: 1029-242X
DOI: 10.1186/s13660-015-0937-4